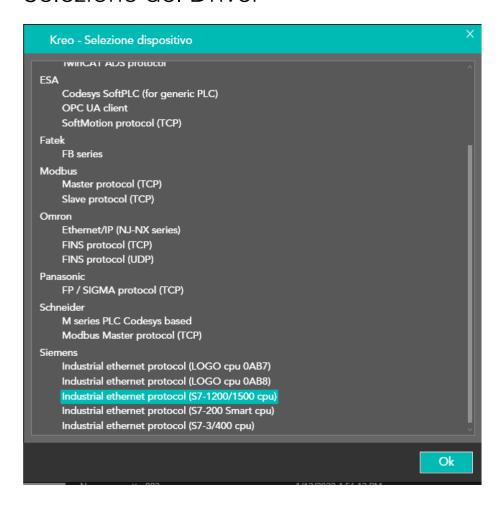


Siemens – S7 1200 - 1500

Documentazione Driver

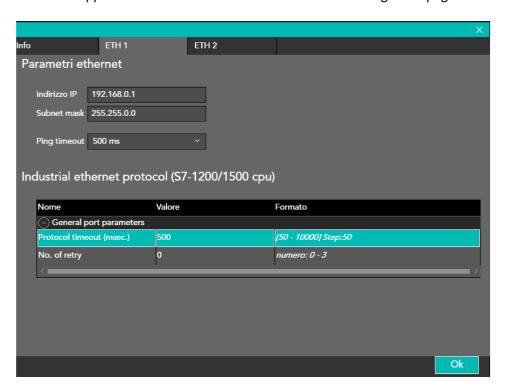
Connect Ideas. Shape solutions.

Sommario

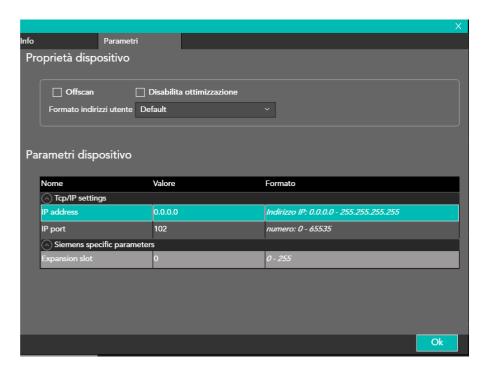

Descrizione del documento	
Selezione del Driver	3
Parametri di comunicazione	4
Programmazione di una Tag	
Aree di memoria	8
Counter e Timer	
Codici di errore	11

Descrizione del documento

Questo documento è dedicato alla programmazione ed alle funzionalità del driver Siemens per PLC della serie S7 1200 - 1500.


Selezione del Driver

Parametri di comunicazione


Facendo doppio-click sul modello HMI viene visualizzata la seguente pagina:

Indirizzo IP	Indirizzo IP della porta HMI connessa al PLC MicroLogix
Subnet mask	Subnet mask della porta HMI connessa al PLC MicroLogix
Ping timeout	Il commando di PING e' inviato al PLC per testare la stabilità della connessione
Protocol	Il PLC deve rispondere alle richieste entro il timeout definito.
Timeout	
No. of retry	Numero di richieste verso il PLC andate in errore per forzare il prodotto in error
	mode

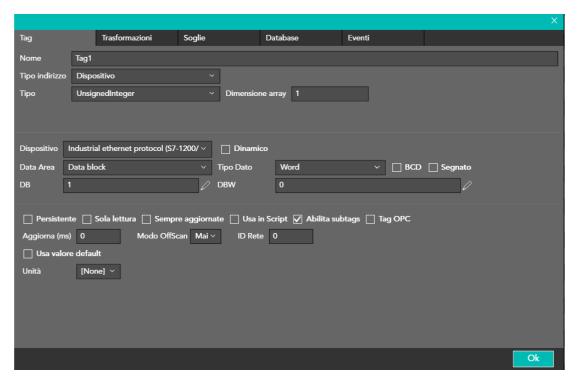
Facendo doppio-click sul driver di comunicazione vengono visualizzati i parametri di comunicazione del driver Siemens S7 1200-1500.

Offscan	Il driver definito nel progetto non viene schedulato.
	Per riabilitare la schedulazione del driver è necessario utilizzare le funzioni
	disponibili a livello di script ST:
	TAG_SETOFFSCANDEV (device, state)
	TAG_SETOFFSCAN (Tag, state)
Disabilita la	Disabilita la ottimizzazione della richiesta dei dati.
ottimizzazione	Ogni variabile viene richiesta con un messaggio dedicato
Formato	Formato dell'indirizzamento della Tag.
indirizzi utente	Il formato di default è predefinito a livello di configurazione del driver ma
	l'utente può selezionare quello preferito (DECIMAL or HEXADECIMAL)
IP address	Indirizzo Ip del PLC
IP port	Porta di connessione.
	Il valore di default
Expansion slot	Id dello slot del rack PLC nel quale e' inserita la CPU

Offscan

La gestione Offscan può essere utilizzata se un modulo della macchina fa parte della applicazione Kreo HMI ma non viene fisicamente connesso.

Un dispositivo NON CONNESSO ma in stato di ONSCAN riduce pesantemente la performance del prodotto dato che i continui timeout di comunicazione rallentano la esecuzione delle funzioni di richieste che seguono.


Disabilita ottimizzazione:

Questa opzione può essere usata per identificare che dato visualizzato su una specifica pagina sta causando l'errore di comunicazione.

Questo valore non verrà visualizzato ma una serie di ????? permette all'utente di identificare facilmente questa Tag.

Programmazione di una Tag

Le variabili hanno un indirizzo fisso mappato sulle aree di memoria messe a disposizione dal PLC.

Aree di memoria

AREA	TIPO	DIM.	R/W	DESCRIZIONE
Data Block	Bit Byte Word Dword Real String String (Plc)	1 8 16 32 32 8 8	R/W	Legge / scrive più DBW 8bit ottimizzate assieme sulla pagina in un unico messaggio. E' previsto un dato tipo "String (PLC)" che viene utilizzato per i dati specifici stringa del software Siemes.
Data block (Simatic Time)	TimeBase 1/100s TimeBase 1/10s TimeBase 1s TimeBase 10s TimeBase AUTO String Format	32 32 32 32 32 32 32	R/W	Legge / scrive dati tipo DBW con rappresentazione formato SimaticTime (vedere sotto per funzionamento)
Timer	TimeBase 1/100s TimeBase 1/10s TimeBase 1s TimeBase 10s TimeBase AUTO String Format	32 32 32 32 32 32 32	R/W	Legge / scrive dati tipo Timer con rappresentazione formato SimaticTime (vedere sotto per funzionamento)
Counter	Value (Word)	16	R/W	Legge / scrive il valore corrente Counter
Merker	Bit Byte Word Dword Real	1 8 16 32 32	R/W	Legge / scrive dati tipo Merker
Input	Bit Byte Word Dword Real	1 8 16 32 32	R/W	Legge / scrive dati tipo Input

Output	Bit	1	R/W	Legge / scrive dati tipo Output
Output	Dit		17, 44	Legge / scrive dati tipo Odtput
	Byte	8		
	Word	16		
	Dword	32		
	Real	32		

Counter e Timer

I dati tipo COUNTER e TIMER sono ora in <u>formato binario</u>, e non occorre più specificare BCD perché il driver si occupa della conversione.

I dati di tipo COUNTER contano per un range di 0..999 fisso. I dati tipo TIMER (o SIMATIC TIME) contano seguendo le regole di seguito:

- Oms .. 9s990ms (con base tempi = 0, ovvero base 1/100s.)
- 0ms .. 1m30s990ms (con base tempi = 1, ovvero base 1/10s.)
- 0s .. 16m39s (con base tempi = 2, ovvero base 1s.)
- 0s .. 2h46m30s (con base tempi = 2, ovvero base 10s.)

Ci sono due aree che hanno un funzionamento differente dallo standard di una TAG semplice:

- area Timer
- area Data Block (Simatic Time)

nelle quali sono presenti i seguenti tipi di dato:

- 1. TimeBase = 1/100s.
- 2. TimeBase = 1/10s.
- 3. TimeBase = 1s.
- 4. TimeBase = 10s.
- 5. TimeBase = AUTO (1ms.)
- 6. String Format

Rappresentazione / Impostazione dei tipi Timer, Data Block (SimaticTime)

- 1. READ: base tempi fissa, formato numerico LONG, rappresentazione 0..999000 (x10ms.)
 - WRITE: base tempi **fissa** (x10ms), formato numerico LONG, valori ammessi 0..999
- 2. READ: base tempi fissa, formato numerico LONG, rappresentazione 0..99900 (x100ms.)
 - WRITE: base tempi **fissa** (x100ms), formato numerico LONG, valori ammessi 0..999
- 3. READ: base tempi fissa, formato numerico LONG, rappresentazione 0..9990 (x1s.)
 - WRITE: base tempi **fissa** (x1s.), formato numerico LONG, valori ammessi 0..999
- 4. READ: base tempi fissa, formato numerico LONG, rappresentazione 0..999 (x10s.)
 - WRITE: base tempi fissa (x10s.), formato numerico LONG, valori ammessi 0..999
- 5. READ: base tempi automatica (x1ms), formato num. LONG, rappresentazione 0..9990000
 - WRITE: base tempi automatica (x1ms), formato num. LONG, valori ammessi

0..9990000

(il driver adatta automaticamente la base tempi in scrittura)

6. READ: base tempi automatica (x1ms), formato STRINGA, rappr. ##h##m##s##ms

WRITE: base tempi **automatica** (x1ms), formato STRINGA, valori ammessi:

• ###ms (es: 100ms - 450ms - 30ms)

• ##s###ms (es: 4s100ms - 6s450ms - 15s30ms)

##m##s (es: 2m4s - 1m40s - 15m30s)
##h##m (es: 2m4s - 1m40s - 15m30s)
##h##m##s###ms (es: 1m25s300ms - 3m1s250ms)

• ###### (es: 100 - 4000 - 567000)

Sono ammessi solamente caratteri numerici ed i valori 'm' 's' 'h' 'ms'; non sono ammessi spazi, ed il formato deve essere coerente. Se viene omessa l'indicazione del tempo (ovvero è presente il solo valore numerico) il dato viene considerato in millisecondi.

Codici di errore

CODICE	DESCRIZIONE
DRIVER ERROR	Impossibile inviare il messaggio di richiesta, possibile problema scheda ethernet
PROTOCOL ERROR	Errore generico di ricezione dati dal PLC
PROTOCOL TIMEOUT	Errore di timeout, non c'è stata alcuna risposta ad una richiesta di dati
PROTOCOL OFFLINE	Dispositivo in offline, non c'è risposta da parte del dispositivo durante la connessione ethernet
SOCKET ERROR	Errore durante la creazione del socket ethernet, il dispositivo non risponde
PING FAIL	Il dispositivo non risponde alla richiesta PING standard ethernet
FORMAT DATA ERR	Il valore (o stringa) inserito nel campo durante la scrittura non è coerente con le regole di formato ammesse
TRANSMISSION ERROR	Errore di trasmissione pacchetto TCP del driver
ERROR	Segnalazione di errore socket driver non gestito

Connect ideas. shape solutions.

ESA S.p.A. | www.esa-automation.com |